在图 3 中,无论是高速或是低速均明显有另一个更强的,峰值频率为 101Hz 的噪声,该离散噪声的声压级高到几乎能接近整机的线性声压级。首先,由于其频率和转速无关,和其声压级值随转速下降而下降得很少,可以确定它不是气动噪声,很可能是结构振动噪声,因此将螺栓连接变为柔性的绳索固定连接方式(以下简称柔性连接),并在改变连接方式后,在同样风机转速下,对同一测点进行声压对比试验。图 4 所示为刚性和柔性连接时 ,转速为 693 r/min 测点为 30 °1m 处的 声压级频谱,明显看出,柔性连接时的 101Hz 峰值频率仍然存在,但其声压级由刚性连接时的 52dB 降到 45dB ,说明它的强度与结构刚度有关,确实是结构振动噪声。值得指出的是,同一转速而连接方式不同时, 80Hz 左右的噪声依然存在,且其强度变化很小,再次说明了是风舌噪声。为了确定其机械结构振动噪声的来源,对室内机测试了一阶共振频率,其值为 70Hz,离 101Hz 很远,排除了共振的可能。由于测试时的交流电源频率为 50Hz,而 101Hz 恰好是它的倍频,估计有电磁激励的可能, 为此,通过变频器将电源频率改变为 55Hz、60Hz,然后再进行同样的声压级频谱测量以便比较。图 4给出了50Hz,55Hz 和 60Hz 电源频率下,柔性连接时北面距中轴线 45 °和1m 处的声压级频谱。显然,随交流电频率的改变,电机转速也相应变化,风舌噪声频率也随之变化,但其峰值仍然存在,如电源频率为 55Hz 时,对应转速为 715 r/min ,其叶片通过频率为 83.4Hz,实测风舌噪声频率为 83Hz ,然而发现:原来对应于 50Hz 电源频率的 101Hz 的峰值噪声移到110Hz;而电源频率改为 60Hz 时,这一峰值出现在 120Hz 处,其峰值频率均恰好为电源频率的倍频,而这噪声峰值对应于不同的电源频率又有很大变化。由此确认:该离散噪声不是电机本身的电磁噪声,而是 由交电磁场激励的结构振动噪声。
3.3 中低频宽带噪声
由图 3 可知,该室内机的噪声除有 2 个很强的离散噪声外,还有 100 ~ 600Hz 的中低频宽带噪声,这是由气流湍流和漩涡流动引起的,厂方原来强调,这可能来源于换热器。为此在整机拆除了换热器后又进行了同样的测试,结果如图 6 所示。 拆除换热器后风舌噪声峰值明显降低,显然这是因为叶轮与机壳的距离增大,即风舌间隙变大的结果。同时还发现,拆除后宽频噪声频谱形状与未拆前极为相似,只是其声压级值平均提高了约 5dB 。说明这个宽带噪声是由风机引起的,而不是换热器。否则拆除换热器后不仅频谱形状应变化,而且总体声压级也应下降。拆除后总体声压级增加的理由是:拆除后整机阻力减少,流量增大,低速时增加 22.5 %,高速时增加 31.5 %,大大偏离了风机的设计工况,这不仅使叶轮内的流动情况变坏,而且叶轮出口流道也大大改变,流动情况也变坏,因此整机的比声压级大为提高,导致总声压级也提高。
4 结论
本文通过对某名牌空调室内机噪声分析,识别出主要噪声源是风机的风舌噪声、电磁激励引起的结构振动噪声和风机内流动引起的宽带噪声,换热器噪声,电机噪声不是主要声源。本文给出的测试和分析方法以及结论对空调室内机噪声的识别有普遍意义。